MathCAD



Рис. 2.7. Решение задачи о коробках III - часть 2


Заканчивается рис. 2.7 формулой, по которой можно рассчитать суммарный объем любого числа коробок, изготовленных по методике, показанной на рис. 2.5. Найдены параметры раскроя при семи шагах. У нас получилась схема оптимизации по переменному

числу аргументов. Стоит только изменить длину вектора a, тут же изменится число шагов раскроя квадратной заготовки.

Продолжение и конец решения задачи о коробках – в этюде 7, где к численным методам расчета добавятся аналитические (символьные) методы и... интеллект пользователя.

Попробуем еще немного «погреметь пожарными ведрами» и зададимся новым вопросом. Что если круглую заготовку посекторно раскроить для изготовления не одного (см. рис. 2.2) и не двух (см. рис. 2.3), а трех ведер? Сможем ли мы еще что-то «выжать» из задачи? Можно ли так раскроить круглую заготовку на три сектора и свернуть из них три конуса, чтобы превысить «двухведерный» рекорд, зафиксированный на рис. 2.3? Новая, «трехведерная» задача сводится к поиску максимума функции двух переменных: a (угол заготовки для первого ведра) и b (для второго). Третьему ведру перепадут остатки: 360-a-b.




Содержание  Назад  Вперед