MathCAD




Рис. 3.9. Задача о пожарных ведрах: перебор - часть 2


Пусть у нас 100 плодов. Берем первое попавшееся более-менее крупное яблоко и считаем, что оно самое большое со степенью вероятности, намного превышающей 1% (1/100). Второе выбранное яблоко (а оно, естественно, должно быть больше первого) существенно повышает вероятность выбора самого большого. Так очень скоро, перебрав (взвесив, измерив или просто оценив на глаз) всего лишь несколько яблок, а не все сто, можно выбрать относительно самое большое яблоко. Кто-то возразит, что яблоки перед отбором могут быть кем-то

отсортированы так, что самое большое окажется в хвосте очереди (на дне корзины). Но это уже будет искусственная ситуация, враждебная человеку[11]. Мы же говорим о дружественных

ситуациях. Данный алгоритм станет совсем естественным, если отбирается не самое большое, а, например, самое красивое яблоко. Здесь полный перебор будет уж совсем диким. К понятиям большое и красивое можно приложить теорию нечетких множеств, о которой речь пойдет в этюде 6.

К сожалению, задачи, приведенные в данной книге, начиная с самой простой (задача о купце и сукне – см. этюд 1) и заканчивая самой сложной (это, наверное, задача о трехсторонней дуэли – см. этюд 6), нельзя отнести к разряду естественных. Все они довольно надуманные, призванные скорее иллюстрировать возможности Mathcad, а не показывать пути решения практических задач. Автора утешает и одновременно огорчает то, что таким недостатком грешат почти все книги по программным средам. Надуманная задача – это призма, сквозь которую вдумчивый читатель посмотрит на реальную задачу.




Содержание  Назад  Вперед